苏州莱瑞测信息科技有限公司

CMOS集成电路中ESD保护技术研究

   2010-01-20 3270
本文导读:  静电在芯片的制造、封装、测试和使用过程中无处不在,积累的静电荷以几安培或几十安培的电流在纳秒到微秒的时间里释放,瞬间功率高达几百千瓦,放电能量可达毫焦耳,对芯片的摧毁强度极大。所以芯片设计中静电保

  静电在芯片的制造、封装、测试和使用过程中无处不在,积累的静电荷以几安培或几十安培的电流在纳秒到微秒的时间里释放,瞬间功率高达几百千瓦,放电能量可达毫焦耳,对芯片的摧毁强度极大。所以芯片设计中静电保护模块的设计直接关系到芯片的功能稳定性,极为重要。随着工艺的发展,器件特征尺寸逐渐变小,栅氧也成比例缩小。二氧化硅的介电强度近似为8×106V/cm,因此厚度为10 nm的栅氧击穿电压约为8 V左右,尽管该击穿电压比3.3 V的电源电压要高一倍多,但是各种因素造成的静电,一般其峰值电压远超过8 V;而且随着多晶硅金属化(Polyside)、扩散区金属化(Silicide)、多晶硅与扩散区均金属化(Salicid)等新工艺的使用,器件的寄生电阻减小,ESD保护能力大大减弱。为适应VLSI集成密度和工作速度的不断提高,新颖的集成电路NSD保护电路构思不断出现。本文将对ESD失效模式和失效机理进行了介绍,着重从工艺、器件和电路3个层次论述ESD保护模块的设计思路。

  1 ESD的失效模式

  因ESD产生的原因及其对集成电路放电的方式不同,表征ESD现象通常有4种模型:人体模型HBM(Hu-man-body Model)、机器模型MM(Machine Model)和带电器件模型CDM(charged-Device Model)和电场感应模型FIM(Field-Induced Model)。HBM放电过程会在几百纳秒内产生数安培的瞬间放电电流;MM放电的过程更短,在几纳秒到几十纳秒之内会有数安培的瞬间放电电流产生。CDM放电过程更短,对芯片的危害最严重,在几纳秒的时问内电流达到十几安培。

  ESD引起的失效原因主要有2种:热失效和电失效。局部电流集中而产生的大量的热,使器件局部金属互连线熔化或芯片出现热斑,从而引起二次击穿,称为热失效,加在栅氧化物上的电压形成的电场强度大于其介电强度,导致介质击穿或表面击穿,称为电失效。ESD引起的失效有3种失效模式,他们分别是:

  •   硬失效:物质损伤或毁坏;
  •   软失效:逻辑功能的临时改变;
  •   潜在失效:时间依赖性失效。

  2 MOS集成电路中常用的提高ESD能力的手段

  2.1 从制程上改进

  目前从制程上改进ESD保护能力有2种方法:增加ESD注入工序和增加金属硅化物阻挡层掩模版。这两道工序提高了器件承受ESD的能力,但同时也增加了工艺成本。

  2.1.1 ESD注入工序(ESD Implantation)

  在亚微米工艺中,引进了漏端轻掺杂工序(Low Do-ping Drain)见图1(a),这步工序在源端和漏端与栅极重叠的地方生成一个轻掺杂浓度的浅结,可以降低漏端在沟道中的电场强度分布,从而克服因热载子效应(Hot CarrierEffect)所造成的器件在使用长时间后Vth漂移的问题。该浅结一般只有0.2 m左右深,形成曲率半径比较小的尖端,静电通过时,会在该尖端先放电引起结的击穿,导致热失效。采用LDD结构的MOS器件作输出级,很容易被静电击穿,HMB测试击穿电压常低于1 000 V。

  在输入/输出端口处的MOS器件上增加ESD注入层见图1(b),ESD Implantion可以制备深结的传统MOS器件,从而提高亚微米工艺下器件的ESD保护能力;在内部电路仍然使用有LDD结构的MOS器件。这样在提高器件性能的同时又增加了ESD的保护能力。例如在相同chan-nel width(W=300μm)情形下,LDD结构的 NMOS器件,其ESD防护能力只有约1 000 V(HBM);但ESD-Implant的NMOS元件,其ESD防护能力可提升到4 000 V。

内部电路中MOS结构和ESD保护电路中MOS结构

  用ESD-Implant Process做的NMOS需要增加抽取SPICE参数的步骤进行电路仿真与设计。另外一种ESD-Implant的方法是在漏结上增加一高浓度注入的P结,使形成的PN结的击穿电压低于LDD结构的击穿电压,静电放电时,会先从该低击穿电压的PN结流过,而不至于在LDD尖端放电,造成损伤。这种方法不需要对MOS器件作额外的处理。

 
反对 0举报收藏 0打赏 0评论 0
免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
 
更多>相关阅读
推荐图文
推荐电磁兼容
阅读排行
网站首页  |  网站介绍  |  版权声明  |  积分规则  |  定制推广  |  服务协议  |  隐私政策  |  联系我们  |  广告服务  |  会员服务  |  排名推广  |  网站留言  |  RSS订阅  |  网站地图  |  违规举报