分享好友 电磁兼容首页 电磁兼容分类 切换频道

磁粉芯在高性能EMI滤波器中的应用

2010-04-301860陆凡(译)电源技术应用


3 电源滤波器

滤波器通常用于电路或一部分电路以防止电磁干扰(EMI)。不设滤波器则无用的电信号将会沿着电源线或共用母线传导引起EMI,而传导干扰也能继发射频干扰(RFI),这是因为电源线对于高频则是一天线。滤波器的作用就是防止在供电的同时将电噪声传导到电力线上。

对于那些连接到公用电上的电子、电器设备而言,各国政府机构都对特定的频率范围内所允许的最大传导噪声电压有具体的规定。比如,美国联邦通讯委员会(FCC)就规定,在450kHz到30MHz频段内的无线电射频干扰,应限制在48dBμV(250μV)以下。这种规定的目的就是要防止射频干扰对公共电子设施,如无线电、电视机、电话机等的干扰。

在电子系统中对电源输出端噪声的限制,要由其负载的需要决定。在大多数情况下,噪声的滤除是由前述的滤波元件(电感器和电容器)来完成的,由它们抑制输出电压的脉动。为了抑制电源输出端的EMI,有时设计二级滤波。

在含有开关器件的设备中,比如开关电源的功率晶体管和二极管,都需要在电源输入端加装EMI滤波器。在电路中电流的突然变化会导致电压的短暂升高(或称电压尖峰),这个电压尖峰既施加在输入导体之间,也施加在导体与地线之间。

在输入导线之间的EMI电压称之为差模噪声。导线对接地端的噪声称之为共模噪声。对于抑制共模噪声的电感器,需要在一个磁芯上绕制两组电流方向相反的导线,并使用高磁导率的磁芯。
按此在新窗口浏览图片
相反,对于抑制差模噪声的电感器,则要求磁芯材料在偏磁场下仍然能够保持磁导率指标。图8中,标出了流经电感器的电流I,电压V和磁芯中的磁场强度曲线,并且画出了差模滤波器和共模滤波器在开关电源中的应用线路图。在输入端,可以是交流输入(如市电),也可以是电池供电(如48V,用于电信设备中)。当电池供电时,磁化电流是恒定的直流电。对于高功率因数的交流电系统,磁化电流接近正弦波波形。而低功率因数的交流电系统,其磁化电流则由一系列的交变脉冲叠加组成。

三种磁粉芯材料(铁镍钼MPP,铁镍HF和铁硅铝SUPERMSS)最适合用于差模滤波器中的电感(有时这种电感也称之为“串模电感”或“扼流圈”)。原因是这三种磁粉芯材料在偏磁场下具有极好的电感量保持能力。铁镍50%HF高磁通磁粉芯(美国阿诺公司注册商标Hi-FluxTM),特别适合用于高磁通密度工作条件。为了便于比较,图9标明了三种不同材料磁粉芯在直流偏磁场下的磁导率变化曲线。
按此在新窗口浏览图片
图9中的曲线是对三种不同材料的磁粉芯,在相同尺寸,相同磁导率,单级滤波器电路中测试得到的数据而绘出的。磁芯分别为铁镍钼MPP磁粉芯(A-291061-2);铁镍50%HF合金(HF-130060-2);和铁硅铝SUPERMSS合金(MS-130060-2),尺寸均为外径33.02mm×内径19.94mm×高度10.67mm,磁导率相同(60)。由图9可知三种材料的磁导率随直流偏磁的增大而减小。

所谓“完全绕线磁芯”,指绕线后的磁芯,漆包线绕线厚度正好达到磁芯原来内径的一半位置。通常,在生产工艺中,需要考虑使绕线机上的线钩或线梭在绕制最后一圈漆包线时,还可以有足够的空间。在本实例中,电感量为1.9mH,这个电感量数值是典型的线路滤波所需要的电感量。一般而言,滤波电感的电感量选择范围在几个μH到几个mH之间。
按此在新窗口浏览图片
在工频下,要求磁芯损耗低,以便充分发挥磁芯材料的高饱和磁通密度性能。图10是对高磁通铁镍50HF磁粉芯测试结果而绘制的曲线。由于高磁通铁镍50HF磁粉芯有高的损耗,所以可以用在工作条件最恶劣的情况。在400Hz,9000Gs磁通密度下,它的磁芯损耗为200mW/cm3。在50Hz或60Hz下工作,磁通密度的使用上限要根据磁芯磁导率变化的大小确定,具体可参见图11。
 
按此在新窗口浏览图片按此在新窗口浏览图片
按此在新窗口浏览图片按此在新窗口浏览图片
另外一个需要重点考虑的因素是,电感量会随频率变化而变化。图12,图13和图14所示的是,三种不同磁粉芯材料(MPP,HF和SUPERMSS)绕制的电感器(采用单层绕线,电感量为60μH),它们各自的等效电感、等效串联电阻、等效阻抗与频率的关系曲线。

从图12可看到,高磁通铁镍HF磁粉芯的等效串联电感值随频率增加而跌落,这是由于其磁导率下降所致。其根本原因在于频率增高后涡流损耗随之增大所造成的。正如前所述,在高频下的损耗对滤波器来说是一个优点,这是因为这个损耗对阻尼衰减提供了附加的稳定因素。图15是对图12和图13、图16是对图14在100kHz到1MHz范围内的曲线进行的局部放大图,以便更清楚地看到三种磁粉芯的串联等效电感和等效电阻及等效阻抗随频率变化的趋势。可以很明显地看到,铁硅铝SUPERMSS在高频下的涡流损耗是最低的,所以它的电感量(磁导率)和电阻都是变化最小的或基本不变的。
按此在新窗口浏览图片按此在新窗口浏览图片
按此在新窗口浏览图片按此在新窗口浏览图片

最后,看一下电感器的分布电容(对单层和多层绕线做比较)与频率的关系曲线,见图17和图18。从图中看到,超过1.6MHz之后,这个杂散电容确实使成本高的多层电感器的阻抗比成本较低的单层电感器的阻抗要低。

4 结语

三种磁粉芯材料都非常适合用于电源滤波。高磁通铁镍50%HF磁粉芯的性能最好,因为它在高饱和磁通密度下具有保持电感量的能力,同时它还提供在高频下所需要的阻尼衰减功能。

另外一个需要重点考虑的因素是,由于磁性材料本身所具有的磁致伸缩所产生的音频噪声。而高磁通HF铁镍50%磁粉芯在50Hz或60Hz下,会产生音频噪声(嗡嗡声)。当然,直流磁化电流不会产生音频噪声,所以它最适合用作电池供电的电源系统中输入滤波电感。

铁镍钼MPP磁粉芯和铁硅铝SUPERMSS磁粉芯都具有特别低的磁致伸缩系数,它们都不会产生音频噪声。铁镍钼MPP磁粉芯在直流偏磁场下的磁导率变化量最小,这是它的一个优点。由于50Hz或60Hz交流电与音频频率相比几乎可以认为是近似直流,所以可以用在直流偏磁下三种磁粉芯磁导率变化曲线,来推测50Hz或60Hz电流偏磁场下的磁导率变化趋势。铁硅铝SUPERMSS磁粉芯的单位体积制造成本(价格)最低,最适合用于一般电源滤波电感,具有很高的性能价格比。而铁镍钼MPP和高磁通铁镍50%HF磁粉芯的价格水平差不多,铁镍钼MPP磁粉芯最高。
« 上一页 3/3 下一页 »
收藏 0
打赏 0
评论 0
详解开关电源电磁干扰产生原理及三种控制技术
电磁干扰的产生与传输电磁干扰传输有两种方式:一种是传导传输方式,另一种则是辐射传输方式。传导传输是在干扰源和敏感设备之间有完整的电路连接,干扰信号沿着连接电路传递到接收器而发生电磁干扰现象。辐射传输是

0评论2025-03-1026

电子产品中PCB的EMI控制技术
随着IC器件集成度的提高,设备的逐步小型化和器件的速度愈来愈高,电子产品中的EMI问题也更加严重。从系统设备EMC/EMI设计的观点来看,在设备的PCB设计阶段处理好EMC/EMI问题,是使系统设备达到电磁兼容标准最有效、成本最低的手段。本文介绍电子产品中电路PCB设计中的EMI控制技术。

0评论2025-01-05127

电路板布局布线及连接线耦合EMI辐射超标
电子产品产生电磁兼容问题都必须具备以下三个条件:骚扰源(干扰源)、耦合途径、敏感设备,我们称之为电磁兼容三要素,缺少任何一个都构不成电磁兼容问题。骚扰源:即是产生骚扰的电子电气设备或系统,说明骚扰从哪

0评论2021-11-23277

直流电机的EMI的分析与设计
在我们碰到的直流电机的电磁兼容问题上,通常是具有换向气的直流电机(转子励磁调速电机等类同)在电机运行的过程中会产生一定的电磁骚扰。由于在直流电动机或直流发电机在运行时,电枢绕组器件由某一支路进入另一支

0评论2021-11-23689

三个方面解决LED驱动电源的电磁干扰问题
熟悉电源电路设计的朋友们都知道,在LED电源的设计过程中,电磁干扰EMI是个不小的难题,那么如何能解决这个问题?本文将从这一角度来分享对电磁兼容性的处理,让电磁干扰不再是难题!电磁兼容(EMC)是在电学中研究意

0评论2021-03-23932

如何改善开关电源电路的EMI特性?
摘要:开关式电源设计发展趋势是小型化。开关电源小型化设计中,提高开关频率可有效提高电源的功率密度。但随着开关频率提升,电路电磁干扰(EMI)问题使电源工程师面临了更大的挑战。本文以反激式开关拓扑为例,从

3评论2021-01-28576