分享好友 电磁兼容首页 电磁兼容分类 切换频道

EMC整改中线缆的屏蔽接地问题

2017-02-0612390小汤电磁兼容(EMC)公众号

EMC工程师在整改过程中,处理线缆的辐射问题时,经常会采取屏蔽措施,将暴露的线缆采用导电胶带,铜箔的方式缠绕,或者直接采用带有屏蔽层的同轴线。在屏蔽的两端进行接地,有时候遇到另一端附近是插头,附近找不到合适的接地点,经常只有一头是接地处理。这样的处理方式跟不接地有多少区别,跟两端都接地又有多少区别?本文就来讨论一下这个问题。

一、我们知道线缆辐射的产生,是由于ΔU的存在。屏蔽层中存在的ΔU正是驱动噪声不断向空间辐射的动力。这里借由仿真工具查看屏蔽层中的ΔU,我们建立一端长度为60cm的同轴线,用来模拟加屏蔽层的单线,线缆型号为RG58。

 创建上图的spice模型,并进行电路搭建。首先,屏蔽层不做接地处理,在线缆内芯和屏蔽层两端分别放置探头,如下图。

激励波形为一随机的方波信号,如下图。

 

仿真得到P3和P4的电压,如下图。

 

这里,我们定义电压P3-P4为需要的ΔU波形,经过处理后得到下图。从结果可以看到,不接地的屏蔽层中存在很高的ΔU电压信号。

 

采用同样的方法,分别仿真P3端接地、P4端接地、两端接地。得到ΔU波形并和上图中的ΔU进行比较。

 

从上图可以看出,两端接地的屏蔽效果是最好的,ΔU曲线除了前段有个接近-0.5V的小包外,其余幅值均在0.05v左右。P3接地和P4接地的效果相当,差别仅在相位上;不接地处理方式的屏蔽层存在较大的ΔU。

二、一米法远场的辐射值对比

为了验证上述结果,我们采用另一个仿真工具,建立一条同样的RG58线缆,这里对线缆内部的绝缘层进行精简处理,采用空气替代。与上面不同的是,这次我们查看的是远场结果,这里我们按照GJB151设置远场为一米法。

 

同样的,设置四组对照组,分别为两端接地、不接地、波端口接地、波尾部接地。激励波形采用第一步仿真中保存的波形参数。对其仿真结束后,将一米法的电场信号和磁场信号进行对比,如下图:

电场对比

磁场对比

由于设置线缆长度的原因,166MHz处刚好有个谐振峰(没有必要的前提下,尽量缩短线缆长度,否则即使屏蔽,即使接地处理,依旧有相当强烈的EMI产生),从远场结果来看,不做接地处理的屏蔽线缆,其电场和磁场辐射值是最强的,尾部接地处理的结果要高于波端口处接地,甚至非常接近不接地处理。检查激励信号波形和P3位置的波形,将其对比发现,两波形是刚好反相位的,所以激励信号加强了屏蔽层的EMI信号,使其辐射值变大。如下图:

相反的,波端口位置接地的波相位刚好相同,这就使屏蔽层与线芯内部信号能够相互抵消,降低了EMI信号。如下图:

  

结论:

1、在必要的情况下,两端都进行接地结果是最理想的;

2、靠近信号源的接地效果要优于远离信号源接地;

3、线缆的长度越短越好,防止因谐振造成低频EMI信号的产生,低频的EMI信号对机箱的屏蔽将会是严重的考验!

本文转载于电磁兼容(EMC)微信公众号,作者:小汤;转载请注明作者及出处,谢谢!

关注电磁兼容电磁兼容(EMC)微信公众号,接收电磁兼容相关内容,长按下方二维码设别即可:

 

收藏 0
打赏 0
评论 0
整车电磁兼容设计-线束串扰的问题分析
整车上有这一线束设计,电动尾门撑杆电机电源由尾门控制器驱动输出,同时电机反馈霍尔信号到尾门控制器,驱动电压和霍尔信号的电压幅值为12V。电机驱动电源和霍尔信号的共走线长度为1385mm(54.5in),驱动电源为PWM驱

0评论2025-03-2911

雷达电路系统的抗电磁干扰和EMC分析设计
现代雷达对信号频谱质量的要求越来越高,并要求雷达能在恶劣的电磁干扰环境中可靠工作,这就对雷达电路系统的抗电磁干扰能力和电磁兼容设计提出了更高的要求。由于雷达信号的寄生输出,除了在信号变换等过程中产生外

0评论2023-03-14249

通信开关电源的EMI/EMC设计
引言通信开关电源一般都采用脉冲宽度调制(PWM)技术,其特点是频率高、效率高、功率密度高、可靠性高,另外还有体积小、重量轻、具有远程监控等优点,因此被广泛地应用于程控交换、光数据传输、无线基站、有线电视系

0评论2018-12-25644

结构方面的EMC/EMI设计知识
电磁兼容(Electromagnetic Compatibility , EMC)主要包含两方面的内容:一、电磁干扰(Electromagnetic interference , EMI);二、电磁敏感度(Electromagnetic susceptibility , EMS)。电磁兼容设计基本目的:A

0评论2018-09-081436