苏州莱瑞测信息科技有限公司

家用电器的电磁兼容性设计

   2006-02-09 中国科学院电子学研究所 白同云1920


对于高电压、小电流的骚扰源,应采用近场电场屏蔽,即采用高导电率金属屏蔽体并接地;
对于低电压、大电流的骚扰源,应采用近场磁场屏蔽,但不同频率时应采用不同的措施。直流或低频时,可用铁、硅钢片、坡莫合金、合金等高导磁率材料制成屏蔽体,可以不接地。磁导率越高,屏蔽效能越高,增加厚度也会增加屏蔽效能,但很不经济,可以改用多层屏蔽。频率较高时,由于磁导率下降和磁损增加而不再适用,应采用高导电率金属材料,如铜、铝等。这时,如果屏蔽体接地良好,还可以同时屏蔽高频电场。

敏感电路距离骚扰源较远时,采用远场电磁屏蔽,即用高导电金属材料制成屏蔽体。家用电器屏蔽机箱或屏蔽盒的材料一般可采用铜板、钢板、铝板、镀锌铁板等,厚度约为0.2—0.8毫米。由于高频电流具有集肤效应,在工程塑料机箱上喷涂一层导电漆,就能起到良好的屏蔽作用。但实际机箱总有各种大小的孔、缝和开口,都可能造成骚扰的耦合。为此,可采用导电衬垫、金属丝网、截止波导管、截止波导通风板、导电玻璃视窗等,改善屏蔽效能。

3.4 滤波技术可以用来抑制家用电器中传导骚扰的传输,而使需要的频率分量顺利通过。所使用的滤波器的重要特性用频率特性,即插入损耗随频率的变化来表征。插入损耗定义为信号源不接滤波器、直接加在负载上的电压,与信号源通过滤波器后加在负载上的电压的比值。能无衰减地通过滤波器的频率范围称为通带,而受到很大衰减的频率范围称为阻带。抑制传导骚扰的滤波器有反射式滤波器和吸收式滤波器等。

反射式滤波器是由电感、电容等元件组成的低通滤波器,在阻带内能提供高的串联阻抗和低的并联阻抗,并与骚扰源的阻抗严重不匹配,能将高频骚扰反射回骚扰源而被滤除,有用的低频分量则很小的衰减通过。常用于电源线滤波器和信号线滤波器。

吸收式滤波器是由有耗器件构成的,在阻带内,有耗器件将传导骚扰的能量吸收后转化为热损耗,而起滤波作用。铁氧体材料就是一种广泛应用的有耗器件,可用来构成低通滤波器。当导线中的低频电流穿过铁氧体时几乎没有损耗,但高频电流却会受到很大损耗。这因为铁氧体材料可以等效为电阻值和电感量都随频率变化电阻和电感的串联。在低频段,电感起主要作用,在高频段,电阻起主要作用,并随频率升高而增加,电感却随频率升高反而减小,因此对高频分量起到较大衰减作用,而对直流或低频分量几乎没有衰减。根据不同的使用场合,铁氧体可以做成多种形式,例如可以直接焊在印刷电路板上的电阻元件形式,可以串在低速信号线上的磁珠,可以套在元、器件引脚或导线上的磁环,可以套在电缆上的柱形磁环和矩形磁环等。

3.5 必须综合使用接地、屏蔽、滤波等防护措施。单独使用任何一种防护措施,都不会达到理想的抑制效果,需要掌握综合使用的技巧。
前面提到,近场电场屏蔽的必要条件是采用高导电率金属屏蔽体并接地;接地良好的屏蔽体还可以实现远场电磁屏蔽。屏蔽电缆屏蔽层的屏蔽效能主要不是因反射和吸收而得到的,却是由屏蔽层接地后才得到的。这因为屏蔽层接地后,才能将外来骚扰短路至地,避免了因与芯线之间存在耦合,而将骚扰耦合至芯线;同理,芯线的骚扰耦合至屏蔽层后,也被短路至地,避免了芯线的骚扰通过屏蔽层向外辐射。可见屏蔽与接地是不可分的。

电磁骚扰入侵屏蔽体的主要途径是输入输出接口和电源线输入口。因为屏蔽体内部的电磁骚扰可以耦合到进、出屏蔽体的导线和电缆上,传导到屏蔽体外,造成辐射骚扰。同样,外来的电磁骚扰也会通过电磁耦合,由这些导线和电缆传导进入屏蔽体。为了阻止骚扰电流的流进或流出,一种简单可行的办法,就是在输入输出接口和电源线输入口分别安装滤波器连接器和馈通滤波器。此外,前面提到的在开口处安装的截止波导管、截止波导通风板、导电玻璃视窗等,实质上都是高通滤波器。可见屏蔽与滤波也是不可分的。

除了特别说明允许不接地的滤波器在使用时可以不接地以外,各类滤波器都必须接地。因为滤波器中的共模旁路电容只有在接地时才能起滤波作用。特别是滤波器,接地不良时,相当于电容和电感并联,完全失去了滤波的作用。此外,安装滤波器时,还应借助于屏蔽,把输入端和输出端隔离开来,以免发生耦合。所以滤波和接地、屏蔽都有密切关系。

为了减小地环路骚扰,需要将信号地线与机壳地线先绝缘再集中,因此,信号地线穿过机壳时必须安装馈通滤波器。而高层建筑上的家用电器需要安装接至大地的地线时,为了避免因地线过长而耦合电磁骚扰,还必须在地线外加装屏蔽套筒,可见,接地和滤波、屏蔽也是不可分的,必须综合利用。
 
反对 0举报收藏 0打赏 0评论 0
免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
 
更多>相关阅读
推荐图文
推荐电磁兼容
阅读排行
网站首页  |  网站介绍  |  版权声明  |  积分规则  |  定制推广  |  服务协议  |  隐私政策  |  联系我们  |  广告服务  |  会员服务  |  排名推广  |  网站留言  |  RSS订阅  |  网站地图  |  违规举报