苏州莱瑞测信息科技有限公司

高速数字电路电源系统的电磁兼容研究

   2011-01-19 今日电子湖南工学院 俞斌4190
本文导读: 随着实时信号处理的速率不断加快,数字电路系统的时钟频率也随之增加。同时,半导体工艺的改进,也使得电路系统中信号边沿速率提升到ns级甚至更高的级别。快速的信号边沿变化使得电路信号产生振铃、反射、串扰、地
           随着实时信号处理的速率不断加快,数字电路系统的时钟频率也随之增加。同时,半导体工艺的改进,也使得电路系统中信号边沿速率提升到ns级甚至更高的级别。快速的信号边沿变化使得电路信号产生振铃、反射、串扰、地弹等许多信号完整性问题。而且,这个问题越来越严重。随着电路中器件和芯片工作环境的恶化,电源受到的影响非常严重,电源系统的电磁兼容性设计变得更加富有挑战性。研究电源系统的电磁兼容性设计非常有必要而且非常紧迫。

  电磁兼容的相关知识

  国家标准GB/T4765—1995《电磁兼容术语》对电磁兼容所下的定义:“设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。”

  1 电源系统的电磁干扰方式

  电源干扰的复杂性原因之一是包含了许多可变的因素。首先,电源干扰可以以“共模”或“差模”方式存在,这是根据电磁干扰噪声对于电路作用的形态来进行划分的,如图1所示。任何电路中都存在共模和差模电流。共模和差模电流决定了传播的电磁能量的大小。如果给定一对导线,一个返回参考平面,那么这两种模式中至少有一种将会存在,但通常是共存。一般来说,差模信号携带数据或有用信息,而共模信号是差模信号的负面效果,不包含有用信息,是辐射的主要来源,解决起来相当的麻烦。

  图1共模与差模干扰示意图

  2 电源系统的电磁干扰类型

  造成电源干扰复杂性的第二个原因是干扰表现的形式很多,从持续期很短的尖峰干扰直至电网完全失电,其中也包括了电压的变化(如电压跌落、浪涌和中断)、频率变化、波形失真(包括电压和电流的)、持续噪声或杂波,以及瞬变等。我们根据国内外的抗扰度测试的一系列标准和实际应用中常常出现的问题,总结了电源干扰的常见起因,如表1所示。
 

 3 电磁干扰的途径

  从电磁兼容标准来说,电磁干扰基本上被分成传导噪声和辐射噪声。这也是一种直观分类,一种是接触性的干扰,一种是非接触性。电磁干扰就其实际作用于电路的机理有四种传输方式:传导耦合,电磁场耦合,磁场耦合和电场耦合,如图2所示。

  图2耦合方式

  抗干扰措施

  因为直流稳压电源既是一个敏感器件也是一个噪声源,因此我们就有如下的滤波策略:一个是对电源系统的前端入口处进行滤波。因为外界对电源系统的影响基本上都是通过入口的电源线引入到电源系统中的。无论是传导噪声,还是辐射噪声都是会耦合到电源线上。因此,该处的滤波要精心处理。二是电源系统的出口,一般来说,这里不应该有太多问题,因为我们选择和设计电源时,都要基于一定的参数和性能指标。但是为了解如何能够达到最佳的电源性能,需要考虑出口的滤波性能。

 
反对 0举报收藏 0打赏 0评论 0
免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
 
更多>相关阅读
推荐图文
推荐电磁兼容
阅读排行
网站首页  |  网站介绍  |  版权声明  |  积分规则  |  定制推广  |  服务协议  |  隐私政策  |  联系我们  |  广告服务  |  会员服务  |  排名推广  |  网站留言  |  RSS订阅  |  网站地图  |  违规举报