苏州莱瑞测信息科技有限公司

通过节省时间和成本的创新技术降低电源中的EMI

   2021-11-30 安规与电磁兼容网TI1030

降低低频发射的创新技术

让我们来看看 TI 在构建其转换器和控制器时使用的几种技术,这些技术可在效率、EMI、尺寸和成本之间实现基本平衡。

 

10.jpg

图 6.具有不同上升时间的方波的 EMI 图

 

1636294972897369.png

图7.不同的开关节点压摆率和相关的振铃对高频发射的影响。更低的压摆率会影响 30MHz 至 200MHz 频带的EMI 滚降,而更低的振铃会在约 400MHz 的振铃频率下影响 EMI。

扩频

扩频技术利用能量守恒原理,通过将能量分散在多个频率上来减小 EMI 峰值。然而,敏感电路“面临”的峰值能量可能不会降低;它取决于敏感电路带宽和频率调制方式之间的关系。测量EMI时,频谱分析器属于敏感电路,而工业标准规定了分辨率带宽 (RBW)。因此,以更有效的方式根据实际标准调制频率非常重要。一般的经验是,使调制频率fm 约等于目标 RBW,扩展带宽 ΔfC 约为 ±5% 至±10%。图 8 在时域和频域中说明了这些参数。

 

12.png

图 8.时域和频域中的扩频参数 fm 和 ΔfC

 

CISPR 25 等标准中通常将 fm 设置在 9kHz 左右以优化低频频带,这也恰好在可闻范围内。为了解决该问题,您可以通过假随机方式进一步实施三角调制,从而传播可闻能量,同时不会对传导和辐射 EMI 性能造成重大影响。下页图 9 在时域和频域中说明了该调制曲线,这是同步降压/升压转换器 TPS55165-Q1 的一个特性。

 

13.png

图 9.在每个调制周期结束时,通过假随机地调制三角波来降低可闻噪声

 

EMI 不限于单个频带(因此不限于单个 RBW),而是存在于多个频带中,这就带来一个困境,因为扩频通常只针对单个频带进行改善。一种称为双随机扩频 (DRSS) 的数字扩频技术为这个问题带来了新的解决方案。DRSS 的基本原理是叠加两条调制曲线,每条曲线针对不同的 RBW。有关更多信息,

请参阅应用报告《EMI 降低技术,双随机扩频》。 图 10 显示了时域中的 DRSS 调制曲线,其中的三角形包络针对较低的 RBW,而叠加的假随机序列针对较高的 RBW。

 

14.png

图 10.DRSS 的时域调制曲线

 

图 11 显示了非同步升压控制器 LM5156-Q1(采用 DRSS 和不采用 DRSS)的传导发射性能。您可以看到 150kHz 至 30MHz 频带以及 30MHz 至 108MHz 频带(这是 CISPR 25 汽车标准的两个关键频带)中的频谱峰值都大大降低了。LM5157-Q1非同步升压转换器也采用了 DRSS 并实现了相似的性能。

扩频技术适用于非隔离式和隔离式拓扑,因为两者的 EMI 源相似,扩频可提供相同的优势。具有集成变压器的 UCC12040 和 UCC12050 隔离式直流/直流转换器能够满足 CISPR 32 B 类 EMI 测试限制要求,部分原因是采用了内部扩频技术。

有源 EMI 滤波

为了显著改善低频频谱中的发射,LM25149-Q1 降压控制器采用了有源 EMI 滤波方法。集成有源 EMI滤波器 通过充当有效的低阻抗分流器,可降低输入端的 DM 传导发射。图 12 显示了降压控制器的有源 EMI 滤波器如何连接到输入线。感应和注入引脚通过各自的电容器连接到输入端。有源 EMI 滤波器块中的有源元件会放大感应到的信号,并通过注入电容器注入适当的反极性信号来显著降低输入线上的总体干扰。这减轻了所需无源元件的过滤负担,从而减小了这些元件的尺寸、体积和成本。

 

15.png

图 12.有源 EMI 滤波器,其中显示了感应和注入电容器以及用于补偿的组件。

 

16.jpg

图 11.LM5156-Q1 升压控制器采用扩频技术前后的 EMI 性能,其中使用的不是专为降低 EMI 而设计的印刷电路板 (PCB)。

图 13 显示了在 400kHz 开关频率下工作的降压转换器的 EMI 测量结果,其中比较了有源和无源 EMI 滤波方法。为了有效满足 CISPR 25 5 类频谱屏蔽要求,无源 EMI 滤波器需要一个 3.3µH DM 电感器和一个 10µF DM 电容器。有源滤波方法通过一个仅 1µH 的 DM 电感器以及 100nF 的感应和注入电容器,可实现同样有效的衰减。这有助于将无源滤波器的尺寸和体积分别减小到原始值的 43% 和27% 左右。对于大电流转换器,可以通过降低电感器直流电阻来进一步降低成本和提高效率。

 

17.jpg

图 13.针对 12V 输入、5V/5A 输出降压转换器使用无源和有源滤波所实现的 EMI 衰减,并比较了这两种方法中的滤波用无源电感器。

消除绕组

与非隔离式转换器不同,跨越隔离边界的额外发射路径是导致隔离式转换器共模 (CM) EMI 的主要原因。下页图 14 显示标准反激式转换器中的隔离变压器存在寄生电容。CM 电流可通过与每个开关节点关联的寄生电容从初级侧直接流入大地。CM 电流还由于绕组之间的寄生电容而从初级侧流至次级侧,从而导致测量的 CM EMI 增大。通常,您可以通过在输入电源路径中使用较大的 CM 扼流圈来降低这种额外的干扰。

 

1636294881551567.png

图 14.在反激式转换器中产生寄生效应的 CM EMI。

为了帮助更大程度地减小无源滤波器件的尺寸,用于高功率密度 5V 至 20V 交流/直流适配器且采用硅 FET 的 65W 有源钳位反激式参考设计针对隔离式转换器采用了消除绕组和屏蔽的方法。如图 15 所示,一种经改进的内部变压器结构在内部初级层和次级层之间插入了一个额外的辅助绕组层(以黑色显示),以实现 CM 平衡。

辅助 CM 平衡层屏蔽了内部的半初级层与次级层之间的界面,有助于生成消除 CM 电压,以消除来自外部半初级层的 CM 注入。通过均衡从辅助绕组和初级外层到次级层的寄生电容,可帮助消除从外部半初级层注入到次级层的 CM 电流(通过从消除层注入反相 CM 电流)。净效应(流入次级层的 CM 电流几乎为零)降低了 CM 发射,从而使用超少的 CM 滤波器件即可让设计满足 EMI 频谱标准要求。

降低高频发射的创新技术

到目前为止,我们介绍的 EMI 缓解技术通常可以减低低频发射 (《30MHz),同时相应地减少了所需的无源滤波量,以及相关的尺寸、体积和成本。现在,让我们来看看旨在缓解高频发射 (》30MHz) 的技术。

HotRod™ 封装

降低高频发射的主要方法之一是更大程度地减小电源环路电感。TI 提供的 LM53635-Q1、LMS3655-Q1、LM61495-Q1、LMR33630-Q1 和 LM61460-Q1 等降压转换器从键合线封装改用基于引线框的倒装芯片 (HotRod) 封装,有助于降低电源环路电感,进而降低开关节点振铃。

 

19.jpg

图 15.使用屏蔽和消除绕组来降低反激式转换器中的 EMI。

HotRod 封装翻转硅片并将其直接放置在引线框上,从而更大程度地减小由运行开关电流的引脚上的键合线引起的寄生电感。图 16 显示了 HotRod封装的结构和优势。除改善电源环路电感之外,HotRod 式封装还有助于降低电源路径中的电阻,从而提高效率并减小解决方案尺寸。

采用 HotRod 封装器件的另一项优势是,这些器件易于实现并行输入路径引脚排列(直流/直流转换器输入电容器的布局布置)。通过优化直流/直流转换器的引脚排列使输入电容器的布局对称,输入电源环路产生的反向磁场就会处于对称环路中,从而更大程度地降低对附近系统的发射。并行输入路径可进一步降低高频 EMI,尤其是在更严格的 FM 频带中,如下页图 17 所示。

 

20.jpg

图 16.标准 QFN,带接合线,可电气连接至裸片 (a);HotRod 封装,引线框和裸片之间带有铜柱和倒装芯片互连 (b)

 

21.jpg

图 17.并行输入路径对 SMPS 中 EMI 的影响。

增强型 HotRod™ QFN

增强型 HotRod 四方扁平无引线 (QFN) 封装可提供 HotRod 封装的所有 EMI 降低功能,并且具有开关节点电容更低的额外优势,从而更大程度降低了振铃。与 HotRod 封装相比,在采用增强型 HotRod QFN 封装的器件中,输入电压 (VIN) 和接地 (GND) 引脚上的寄生电阻器-电感器-电容器 (RLC) 值也更低。

LM60440-Q1 降压转换器采用了增强型 HotRod QFN 封装,下页图 18 显示了其引脚排列和电路板布局布线。增强型 HotRod QFN 封装不仅提高了效率,而且其封装中心具有一个大型的裸片附接焊盘 (DAP)。与 HotRod 封装相比,DAP 有助于改善 PCB 散热,并将结温的上升降低 15% 以上。此外,VIN、GND 和开关节点引脚上较低的 RLC 寄生效应还可以提高效率并降低 EMI。如预期的那样,这会产生更低的 EMI,尤其是在开关节点振铃频带附近,如下页图 19 所示。

集成式输入旁路电容器

如前所述,由于更高的开关节点振铃,较大的输入电源环路会导致在高频频带上产生更高的发射。在器件封装内集成高频输入去耦电容器有助于更大程度地降低输入环路寄生效应,从而降低 EMI。降压转换器 LMQ62440-Q1 中采用了该技术,如下页图 20 所示。除了减小输入电源环路电感之外,输入高频电容器的封装集成还有助于使该解决方案不易受终端系统电路板布局布线变化的影响。

 

1636294837193195.png

图 18.Enhanced HotRod™ QFN 封装器件中的引脚排列和 PCB 布局布线。

图 21 比较了 LMQ62440-Q1 在集成和未集成旁路电容器情况下的辐射 EMI(在相同电路板、相同条件下)。结果表明,更严格的电视频带(200 至 230MHz)中的发射降低了 9dB,这有助于系统保持在行业标准设置的 EMI 限制范围内,而无需在板上添加额外的组件。

 
反对 0举报收藏 0打赏 0评论 0
免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
 
更多>相关阅读
推荐图文
推荐电磁兼容
阅读排行
网站首页  |  网站介绍  |  版权声明  |  积分规则  |  定制推广  |  服务协议  |  隐私政策  |  联系我们  |  广告服务  |  会员服务  |  排名推广  |  网站留言  |  RSS订阅  |  网站地图  |  违规举报