电磁兼容中的隔离技术

   2007-02-28 安规与电磁兼容网郭云松 张英远2190

3. 光电隔离技术 

3.1   光电耦合器

光电隔离采用光电耦合器来实现,即通过半导体发光二极管(LED)的光发射和光敏半导体(光敏电阻、光敏二极管、光敏三极管、光敏晶闸管等)的光接收,来实现信号的传递。由于发光二极管和光敏半导体是互相绝缘的,从而实现了电路的隔离。
当给发光二极管加以正向电压时,由于空间电荷区势垒下降,P区空穴注入到N区,产生电子与空穴的复合,复合时放出大部分为光形式的能量。给发光二极管加的正向电压越高,复合时放出的光通量越大。当然,给发光二极管加的正向电压受其最大允许电流的限制。
当光敏半导体,比如光敏二极管,受到光照射时,在PN结附近产生的光生电子-空穴对在PN结的内电场作用下形成光电流。光的照度越强,光电流就越大。当光敏半导体没受到光照射时,只有很小的暗电流。

3.2   光电耦合器的特性
光电耦合器的特性是用发光二极管的输入电流和光敏半导体的输出电流的函数关系来表示的,如图2所示。



图2   光电耦合器的特性曲线

 从光电耦合器的特性曲线可以看出,光电耦合器的线性度较差,可以利用反馈技术进行校正。

3.3   光电耦合器的应用

由于光电耦合器的输入阻抗与一般干扰源的阻抗相比较小,因此分压在光电耦合器的输入端的干扰电压较小,它所能提供的电流并不大,不易使半导体二极管发光;由于光电耦合器的外壳是密封的,它不受外部光的影响;光电耦合器的隔离电阻很大(约1012Ω)、隔离电容很小(约几个pF)所以能阻止电路性耦合产生的电磁干扰。光电耦合器的隔离阻抗随着频率的提高而降低,抗干扰效果也将降低。

3.4   红外遥控
红外遥控在本质上属于光电耦合,只不过其发光器件和光接收器件不封装在一起,因此红外遥控的隔离效果更好。

3.5   光缆

光缆在本质上也属于光电耦合,其发光器件和光接收器件是通过光缆连接的,由于外界干扰很难进入光缆,因此光缆的隔离效果最好。

4. 机电隔离技术

4.1   有触点电磁继电器

机电隔离一般采用有触点电磁继电器来实现,即电磁继电器的线圈接收信号,机械触点发送信号。由于机械触点分断时,阻抗很大,电容很小,从而阻止了电路性耦合产生的电磁干扰的传输。但是继电器的线圈工作频率较低,不适用于工作频率较高的场合,另外还存在触点通断时的弹跳和火花干扰以及接触电阻等缺点。 

4.2   应用有触点电磁继电器的注意事项 

4.2.1   机械触点的电磁干扰

在机械触点分断信号电流的过程中,由于电路电感的存在将会在触点间感生过电压,这个过电压可能会导致触点间隙击穿而产生电弧;当触点间隙加大时,电弧熄灭,触点间电压又升高,电弧又重燃;如此重复,直到触点间距足够大电流中断时为止。
上述过程中,产生的电弧和峰值大、频率高的电压脉冲串将通过辐射和传导对其它电路和器件形成强烈的干扰。 

4.2.2   机械触点的熄火花电路

机械触点的熄火花电路由电阻R和电容C串联组成。其原理是用电容转换触点分断时负载电感L上的能量,从而避免在触点上产生过电压和电弧造成的电磁干扰,最终由电阻吸收这部分能量。    

 电路参数计算如下:     R>2(L/C)1/2   (7)     C1=4L/R2(8)     C2=(Im/300)2L(9) 式中:R——电阻(Ω);       L——负载电感(μH);       Im——负载电感中的最大电流(A);       C取C1、C2中大者。

4.2.3   电感负载的续流电路

直流电路电感负载的续流电路是用二极管反并联在电感负载上。当切断电感负载时,其上的电流经二极管续流,不会产生过电压而危及电路上的其它器件。

参数选择如下:     

IF>2IN     (10)     

URRM>2UN     (11) 

式中:IF——二极管正向平均电流;       

URRM——二极管反向重复峰值电压;  

 IN——电感负载的额定电流;      

 UN——电感负载的额定电压。     

如果用压敏电阻代替二极管,其效果会更好。因为压敏电阻吸收能量更快,从而减小了动作响应时间。

5. 声电隔离技术

5.1   声表面波滤波器

声表面波器件采用具有压电效应的固体材料作基片,在基片上的两端分别设有指叉交错的金属换能器。把交变电信号加到发射换能器上,由于逆压电效应,压电体表面产生变化的应变,就能激发出声表面波。当声表面波在固体表面传播到接收换能器上时,由于正压电效应,而在接收换能器上就会得到电信号。由于两个指叉交错的金属换能器在电气上是无联系的,因而实现了电路的隔离。

 由于指叉换能器具有一个固有的中心频率,当电信号与该中心频率一致时,产生共振,而发出最强的声表面波。其它频率的声表面波很弱,而被抑制掉。所以声表面波滤波器的隔离效果是很好的。

5.2   声表面波滤波器的应用
 声表面波滤波器目前主要应用在电视和通讯中,作为带通、带阻滤波器、鉴频器和振荡器等等。 

6. 浮地技术

6.1   浮地

浮地,即该电路的地与大地无导体连接。其优点是该电路不受大地电性能的影响。其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。

浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。 

6.2   浮地技术的应用 

6.6.2   交流电源地与直流电源地分开 一般交流电源的零线是接地的。但由于存在接地电阻和其上流过的电流,导致电源的零线电位并非为大地的零电位。另外,交流电源的零线上往往存在很多干扰,如果交流电源地与直流电源地不分开,将对直流电源和后续的直流电路正常工作产生影响。因此,采用把交流电源地与直流电源地分开的浮地技术,可以隔离来自交流电源地线的干扰。 

6.6.2   放大器的浮地技术

对于放大器而言,特别是微小输入信号和高增益的放大器,在输入端的任何微小的干扰信号都可能导致工作异常。因此,采用放大器的浮地技术,可以阻断干扰信号的进入,提高放大器的电磁兼容能力。 

6.3   浮地技术的注意事项
1)尽量提高浮地系统的对地绝缘电阻,从而有利于降低进入浮地系统之中的共模干扰电流。
2)注意浮地系统对地存在的寄生电容,高频干扰信号通过寄生电容仍然可能耦合到浮地系统之中。
3)浮地技术必须与屏蔽、隔离等电磁兼容性技术相互结合应用,才能收到更好的预期效果。
4)采用浮地技术时,应当注意静电和电压反击对设备和人身的危害。 

7   结语

采用电磁兼容中的隔离技术的主要目的是:为了电力电子设备的可靠运行而将干扰源部分和敏感部分隔离开。电磁兼容中的隔离技术主要可分为机电、磁电、光电、声电和浮地等几种隔离方式。其中,磁电、光电、声电等几种隔离方式均为利用各种物理量与电量之间可以相互转换来完成的。不管那种隔离方式,在电磁兼容性方面的实质是人为地造成电的隔离,以阻止电路性耦合产生的电磁干扰。

参考文献 
[1]B.E. 凯瑟(美).电磁兼容原理[M].北京:电子工业出版社,1985. 
[2]D. 斯托尔(德).工业抗干扰的理论与实践[M].北京:国防工业出版社,1985. 
[3]蔡仁钢.电磁兼容原理设计和预测技术[M].北京:北京航空航天大学出版社,1997. 
[4]林国荣.电磁干扰及控制[M].全华科技图书股份有限公司出版,1990. 

 
收藏 0评论 0
免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
 
更多>相关阅读
推荐图文
推荐电磁兼容
阅读排行
点赞排行
网站首页
网站介绍
版权声明
积分规则
服务协议
隐私政策
网站服务
广告服务
会员服务
排名推广
定制推广
积分换礼

RSS订阅
网站留言
网站地图
违规举报

微信公众号

联系我们
苏州市姑苏区三香路979号中翔经贸大楼7楼
服务电话:0512-68157565
客服热线:17314226061
电子邮件:service@lairuice.com