现在让我们定性的查看一下数字电源分布系统的ESL的效应。


公式(5)说明了电流I的变化会造成电源分布系统电压V的下降。在大多数的CMOS电路中,IC在晶体管开关的时候汲取电流,这就意味着当IC开关,电流上就有一个变化,这就导致电源分布系统中的纹波。正如前所证明的,PDS中的纹波会造成系统的错误。要减少高频下的这些错误,就要尽可能的使用最低ESL的去耦电容。从公式(6)可以很明显地看出来,ESL的减少会带来电压V的减小,即是纹波电压的减小。
对于ESR来说也是同样的,如果要更有效的对一个电源分布系统去耦,使用一个ESR尽可能小的电容会更有效果。为了便于说明,我们将实际的寄生电阻ESR写到公式(2)中:

这就意味着不管电容怎样增大,ESR都会产生电压降。在实际应用中,我们必须增加电容值并减小ESR以尽可能的减小电源分布系统的纹波噪声。同时,公式(2)和(7)表述了在高频的情况下,大电容不会对减少电压降有太大的作用。反而,公式(6)表明减小感抗比较增大电容有更明显的效果。
(2) 去耦电容的选择
在低频范围(几十MHz),电容呈现容性,高电容(并且有着低的ESR)将会有助于减少纹波噪声。添加去耦电容可以在一个特定的频率内减小纹波电压:

其中,dt等于最慢的瞬态电流的上升时间(低频)。假设有一个2A的瞬态电流,电压整流模块会在15μs内响应。电源分布系统1.8V的电源供电电压保持在5%的范围内。需要的大电容估算是:

显然,要找到333μF的陶瓷电容是并不容易的。设计者必须找到一个合适的电容,对其进行并联放置以达到所需要的电容和目标阻抗。添加电容的ESL不在去耦中起到主要的作用,但是设计者还是应该尽可能选择比较小的值,这样能够在比较宽的频率范围内减少阻抗。这样有助于减少板上的去耦电容的数量。
在高频(几百MHz)范围内,采用减少寄生电感的方式比提高电容值更有效一些。限制最大的电感量可以使纹波电压达到最小:

其中,dt是瞬态电流的最快上升时间。假设一个2A的电流有着1ns的上升时间,电源分布系统保证1.8V电源供电5%以内的纹波。允许的电感量估算如下:

现在要找到一个ESL为45pH的表贴陶瓷电容还是比较困难的,普通的表贴电容的寄生电感还是nH级的。反之来说,设计者要想达到这一电感量和目标阻抗,首先要选择一个寄生电感足够小的电容(在较高频率的去耦方面,电容量的选择并不起到首要的作用,但是假如给定了最低的ESL,我们必须选择最高的可能容值。因为这样能够在较宽的频率范围内减小阻抗值)。足够数量的低电感电容必须被并联放置,但是往往需要放置的电容比电路板空间所允许的更多。