局部耦合效应
导致 EMC 问题的两个主要不利影响是信号的电感和电容耦合,这会导致传导和/或最终辐射发射。来自电流阶跃的感应电压被量化为 E = -L.di/dt。现代转换器设计可以产生 1000 A/µs 的电流边沿速率;因此,只有 10 nH 可以产生 10 V 电压尖峰。这种电感只有几毫米的走线或布线。
同样,电流是通过杂散电容感应的 I = C.dV/dt,电压边沿速率可以达到 50 kV/µs,仅通过 10 pF 就产生 500 mA 的位移电流,这是变压器隔离电容的典型值。
这些指的是电流和电压脉冲。波形的基频和低次谐波的稳定 RMS 值要小得多,并且是频谱分析中 EMC 发射评估中记录的值。RMS 值可以从开关波形的傅立叶分析中获得,然后从简单的阻抗计算(例如,E = 2πfL.i 或 V = i/2πfC)中获得这些频率下的电流和电压。谐振转换器使计算更加简单。
近场和远场效应
在距离源很近的地方,很难量化场的影响。正如我们已经看到的,改变电场或“E”场会通过杂散电容在导体中感应出位移电流,而改变磁场或“H”场会在导体中感应出电压。这是在“近场”中,距离源 r 处的效应按比例减少到 1/r2 或 1/r3。在更远的“远场”中,这些效应转化为组合电磁 (EM) 辐射,以 1/r 的速率下降。这是通过假设辐射是全向的而得出的结论。近场和远场之间的边界取决于源的物理尺寸 D 和波长 λ,尽管可以近似为:
对于源尺寸 <λ,r = λ/2π
对于源尺寸 >λ,r = 2D2/λ
关于典型的功率转换器基本开关频率,源尺寸肯定小于波长,并且 r 在几十米的范围内;因此,所有的局部效应都是近场效应。在高次谐波水平,例如在 GHz 量级,对于毫米大小量级的源,边界在毫米范围内。EM 辐射标准反映了这一点,规定的限值通常最高为 1 GHz,在相对较短的固定距离处测量。
电流耦合所起的作用
不必要的耦合可以是简单的电流耦合,即来自源的电流在连接中流动,并降低过高的电压,或者与其他电流路径混合产生“串扰”。PCB 走线通常是罪魁祸首,并可能产生显著的直流电阻:35 µm (1oz) 厚的铜片,长 10 mm,宽 1 mm,在 25°C 时电阻接近 5 mΩ,在 85°C 时电阻上升到 6 mΩ。电流流经该电阻时产生的压降会叠加到流经同一连接的任何其他功率或信号电流上,从而可能导致干扰。走线对交流的阻抗更复杂,取决于与相邻走线、接地层和其他元器件的距离。例如,如图 4 所示,在材料相对介电常数为 εr,间隔为 H 的接地层或简单微带线上,宽度为 W、厚度为 t的走线具有以下特性阻抗 Z0:
图 4:具有特性阻抗 Z0 的 PCB
对于典型的 PCB,εr = 4,H = 0.76 mm,T = 35 μm;因此,1 mm 宽的铜质走线将具有大约 65 ohm 的特性阻抗 Z0。该值非常重要,因为该值与走线中高频电流的拉电流和灌电流阻抗之间的任何不匹配都会导致开关边沿出现振铃现象。
过孔也并不完美
层之间的过孔也可以通过其寄生效应予以表征。如图 5 所示,如果外径为 D,内径为 d,未填充,长度为 T,则电感如下:
L = 2T(ln(4T/d) + 1)nH
同时,电容如下:
图 5:过孔尺寸
对于典型的未填充过孔,这些值分别为 1.2 nH 和 0.33 pF。此外,直流电阻约为 0.5 mΩ,而热阻约为 100°C/W。
有时,不可能理想地分离转换器功率路径中的电流。如图 6 所示,经典降压拓扑就是这样一个例子,其中公共接地点的“星形”连接为最佳连接,但由于电路的能量存储和释放阶段有多个电流回路,因此其位置无法达到最佳。此外,反馈信号的最佳公共接地点不一定与功率路径相同。
图 6:带星点接地的 DC/DC 降压转换器,实现最佳折中。
结论
本文涉及了实现功率转换器中元器件和连接之间低交互所需的一些设计考虑因素,这可能有助于实现低传导和辐射发射以及标准合规性。此外,我们还提供了一些现实生活中的寄生值,以便了解这些影响的规模。RECOM 最近出版的 EMC 知识手册是本文的主要来源。至于电池充电器,拆卸后发现,尽管有金属外壳,但没有安全或 EMI 接地连接,没有 VDR,没有安装“X”电容器的空间,扼流圈位置也被捆扎起来。也许设计者有让产品通过资格认证的正确想法,但是削减成本的念头还是盖过了正确意图。