3 PCB板EMC设计
CANsmc系统主站和从站电路板的设计对系统的EMC至关重要,而一个电路板的电磁辐射能力和接收能力往往是一致的,因此在提高电路板抗干扰能力的同时,也抑制了电路板的电磁辐射[1]。PCB板的EMC设计主要考虑以下因素:
(1) 元器件选择和布局
选择EMC性能好的元器件,并尽量选择表面贴装的封装形式。器件合理布局,把相互有关的器件尽量放得靠近些,使各部件之间的引线尽量短。特别是微控制器和CAN控制器的时钟源晶体,一定要按规定放置,否则会不起振。
在位置控制卡中使用了模拟电路,应把模拟电路和高速数字电路合理地分开,使相互间的信号耦合为最小。
(2) 合理布局地线,降低地线阻抗
地线电平是所有信号的参考电位。理想状态下,电路板上所有的地线应该等电位,但是由于地线阻抗的存在导致地线各点电位有差异,所以应该尽量减小地线阻抗。最有效的办法是做多层板,在中间专门设置一层地线面。但是多层板成本较高,本系统中使用了双层板,在双层板的布线面布置了尽量多的平行地线,一面是水平线,一面是垂直线,然后在它们交叉的地方用过孔连接起来,形成地线网格,可以获得几乎和多层板相同的效果。
(3) 稳定电源
CANsmc系统中主站使用ISA插槽供电,从站使用开关电源供电,在电源线的入口处都放置了电容低通滤波器,以过滤电源中的高频毛刺。
电路中逻辑门输出状态切换时的瞬时效应、电源线阻抗的存在等不理想状态会使电源线产生噪声,这些噪声不仅会造成电路工作不正常,而且会产生较强的电磁辐射。除了设置电源线网格来减小电源线的电感和阻抗外,还可以使用储能电容。储能电容为芯片提供了电路输出发生变化时所需的大电流,避免了电源线上的电流突变,减小了感应出的噪声电压。储能电容布置在各个芯片附近,使它对芯片的供电回路面积尽量小,容量为470~1000pF[1]。对于系统中用到的微控制器和位置控制器等QTP封装的大型芯片,在其四周每组电源和地引脚附近都放置了储能电容。
每片芯片的储能电容放电完毕后,需要及时充电,做好下次放电的准备。此时,为了减小对电源系统的扰动,在电源线入口处安装了一个二级储能电容,其容量为芯片储能电容总量的10倍以上[1]。
(4) 降低信号线间串扰
电路板信号线间的串扰也是电路工作不稳定的一个重要因素,尤其是高频信号线。减小串扰,不仅要降低线路的电感,还要关注信号回流线,使回路面积最小。
在布线时,尽量控制走线的长度,加大线路的宽度和线间距离,以减小线路的电感。使用地线网格也可以使信号线回流面积减小,也减小了信号之间的互相耦合。重要信号线和地线之间安装滤波电容,以提高信号质量。高频时钟信号线用地线隔离,以避免和其它信号线耦合。
4 电磁辐射和电磁屏蔽
电磁屏蔽是解决电磁兼容问题的重要手段之一,而且不影响电路的正常工作,因此不需要修改电路。屏蔽体的有效性用屏蔽效能来度量,包括反射损耗和吸收损耗两部分。保持屏蔽体的导电连续性是电磁屏蔽效能的关键。
CANsmc系统中,CAN总线电缆具有很强的干扰辐射和干扰接收能力。电场在电缆中感应出共模电压,而磁场在电缆中既可以感应出共模电压,也可以感应出差模电压。通过屏蔽可以将电磁场的感应干扰降低到最小,而使用双绞线则进一步抑制了磁场感应的差模电压。双绞线的两根线之间具有很小的回路面积,而且双绞线的每两个相邻回路上感应出的电流具有相反的方向,相互抵消。双绞线的绞节越密,则效果越明显,如图3所示。为了减小CANsmc中两路CAN总线之间的串扰,应该将两组双绞线分别屏蔽,电缆中不使用的导线接到信号地。
根据电磁屏蔽的原理可知,接地与屏蔽效能关系并不大,但是为了降低静电放电干扰,整个屏蔽体需要和大地相连。因此屏蔽层应使用连接器护套与主从站屏蔽机箱连接在一起,避免使用屏蔽层捻成小辫的形式。
5 传导干扰和信号滤波与隔离
CANsmc系统正常工作时,产生较大传导性干扰的环节有:开关电源、伺服驱动器、I/O控制设备等。而危害更大的干扰则是瞬态干扰,它的特点是时间短、幅值大、功率小。瞬态干扰的形式有:电机状态改变时产生的电快速脉冲群干扰、雷电或大功率开关在电缆上产生的浪涌、静电放电感应等。传导干扰以共模形式居多,也有部分为差模干扰。
CAN总线电缆是传导干扰传播的一个重要途径,在系统中为保证CAN总线通讯的可靠性而使用的EMC措施有:LC滤波器、瞬态抑制二极管TVS(Transient Voltage Suppressor)、光电隔离等。具体电路如图4所示。
(1) LC滤波器
在电路板的电缆入口处安装LC滤波器可以滤除CAN总线电缆中传导的各种高频干扰信号。LC滤波器的电容并联在CAN通讯信号线和信号地线之间,滤除高频差模干扰的电容,也称为旁路电容。电感串联在信号线上,扼制共模干扰电流。使用共模扼流圈则可以避免电感在流过较大电流时发生饱和,导致电感量下降。所有的信号线都要安装滤波器,否则整体性能会大大下降。