苏州莱瑞测信息科技有限公司

小功率开关电源EMI整改大全

   2020-05-31 安规与电磁兼容网8867
本文导读:EMI对任何一个电源产品来讲,都算得上是难点和痛点,难在它捉摸不透,痛在它无法逃避。由于本人水平有限,对相关的认知深度还远远不够,本帖将着重于结合自身经验来提供一些解决问题方法,并不强调理论与实践严格的

EMI对任何一个电源产品来讲,都算得上是难点和痛点,难在它捉摸不透,痛在它无法逃避。

由于本人水平有限,对相关的认知深度还远远不够,本帖将着重于结合自身经验来提供一些解决问题的方法,并不强调理论与实践严格的对号入座。

首先我们来讨论相对容易的,传导问题。

遇到传导测试超标问题,第一步要做的,通常是定位噪声分量主要是差模还是共模,通常的测试设备可以用来区分差共模分量,但个人觉得太麻烦,并且测试出来的是相对值,并不一定可以具备指导意义。最简单的办法是,在输入端口并联一个X电容,几十nF到几百nF,如果所关心的频段测试通过了,就说明噪声的干扰主要是差模干扰,或者更准确地说,通过压低差模分量,就一定能够搞定问题。

至于差模分量改怎么压下来,无非两种方案,一是加强差模滤波,二是源头上降低差模噪声,下面针对典型的设计来分析解决方案。

 上图是小功率无PFC反激电源典型应用下的部分原理图,其中第三个框内所示的器件是差模噪声的源头:1)流过变压器的电流  2)流过RCD吸收回路的电流,对于一般设计,漏感通常控制得比较小,前者是差模电流主要贡献者。

第一个框和第二个框都起到了差模滤波的作用,第一个框利用X电容和共模电感的差模分量来做差模滤波,第二个框则利用差模电感和两个储能电解电容作π型滤波。典型应用下,两种一般不会同时出现,即典型应用通常有如下两种:

第一种应用下,一部分差模电流被储能电容吸收后,其余分量全部依赖共模电感Lcm和X电容Cx滤除,这种设计通常应用于要求传导EMI接地测试的场合,Lcm感量比较大,对应的差模分量也比较大,从滤波角度压低差模分量的措施有三种:1)降低储能电容C1的ESR和ESL;2)加大X电容Cx容量;3)加大差模电感Lcm的差模分量。

第一种措施受制于电解电容本身特性,发挥空间不大,第二种措施受制于空间尺寸、待机功耗(更大的X电容需要更小的放电电阻)等,第三种方案发挥空间相对大。我们可以通过同时增加共模感量(使用磁导率更高的磁环、使用尺寸更大的磁环以及增加绕组匝数)的方式来增加差模分量,也可以通过适当降低共模感量的方式来提升差模感量,简单的办法是:对于环形的共模电感,可以在两个绕组中间插入一块矽钢片,为磁环提供一个产生差模磁通的通路,这种方案不会增加尺寸,也几乎不增加成本,缺点是会牺牲一定的共模感量,但通常应用下,共模感量的余量是比较充裕的。

第二种应用下,差模电流完全依赖储能电容和差模电感,总体来讲,这种设计对于差模分量的滤波能力是很强的,成本也比较低廉,因为差模电感可以使用廉价的工字电感。这种设计主要问题有两个:1)电解电容ESR的特性会导致低温和常温下差模滤波效果不佳,而高温或老化一段时间后裕量会变得充足;2)这种设计增加了C1的浪涌电流压力,也增加了C2的纹波电流压力。由于用于储能的电解电容容量被分配到差模电感两端,当浪涌测试时,绝大多数浪涌电流都被C1吸收,导致C1失效概率增加;另一方面,绝大多数高频分量的纹波电流都被C2吸收,导致正常工作下C2温升会显著高于C1,C2寿命受到影响。

尽管存在上述问题,但利用储能电容构成π型滤波的方式由于差模滤波效果好,无需X电容,成本低,仍然广泛应用在小功率电源产品中。解决上述问题的另一种方法是将C2换成低容量的耐纹波电流能力强的薄膜电容,这样在不降低差模滤波能力的前提下,可以使用大容量的C1增强浪涌电流耐受能力。

传导共模噪声个人总结通常有几种路径:
1)开关动点高的dv/dt直接耦合到输入L/N线
2)开关动点高的dv/dt从原边侧与地平面产生耦合
3)开关动点高的dv/dt通过变压器耦合到副边,进而从副边输出耦合到地平面
4)开关回路高的di/dt产生磁场,耦合到输入L/N线

以上的地平面指的是大地,以上的前三种均为电场耦合,传递路径是寄生电容;第四种为磁场耦合。

对于第一条,通常通过布局走线就能够略知一二,高dv/dt的器件和线路集中在原边开关管和变压器,最典型的情况是原边开关管或者变压器靠近输入L/N线,这种情况造成的问题只能通过减小耦合电容来解决,拉远动点和输入线的距离,采用电场屏蔽措施。实际应用中最常见的方法是将输入电解电容(外壳接原边地)或接原边静点的散热片置于原边开关管和输入L/N之间,将变压器的磁芯接原边静点(磁芯为原边的情况)。

另一个反面的案例是绝大多数灌胶的应用中,由于胶的介电常数通常为空气的数倍,灌胶后的共模传导会全面恶化。

第二条和第一条情况有相似之处,只是耦合回路是大地而不是输入L/N线,因此第二条干扰源通常有比较大的面积,比如插件TO220的MOSFET(散热器为漏极动点)、悬浮的变压器磁芯以及动点的大面积铺铜(对于依赖漏极散热的硅MOS,大面积铺铜需要特别注意)。在实际应用中,同一个措施可能对对第一条和第二条同时有效,例如原边MOSFET增加接静点的散热器,变压器磁芯接原边静点等。

第三条情况相对复杂的一条,也是工程应用中大有可为的一条。

3)开关动点高的dv/dt通过变压器耦合到副边,进而从副边输出耦合到地平面(或者从原边耦合到地平面)

下面重点分析第三条的机理和解决措施。

 上用不同颜色示意出了变压器原边动点对副边静点的等效电容Cps,副边动点对原边静点的等效电容Csp,原副边跨接电容Cy以及副边对大地的寄生电容Ce(原边对大地的寄生电容没有画出来),同时示意出了流过这些电容上的电流。

常规的输出同步整流底边工作时,从变压器相位可以看出,原副边的动点是反相位的,这意味着图中的Ips和Isp极性相反,也就是说流过变压器的原副边电流是叠加的,这个叠加后的电流一部分通过Y电容在原副边形成环路,另一部分则通过寄生电容流向了大地,这部分流向大地的高频电流也就是传导共模来源之一,大多数情况下是主要贡献者。

那么,为了减小共模电流Ie,很显然有两个途径:一是减小变压器原副边共模电流,二是增大跨接Y电容,减小寄生电容的分流。

第二条途径想必是大多数工程师曾亲测有效的,有效频段甚至是整个CE测试频段和RE测试低频段。第一条途径说白了就是要整改变压器了,整改的手段可能很多工程师都用过,只是没有和机理一一对应。

 
反对 0举报收藏 0打赏 0评论 7
免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
 
更多>相关阅读
推荐图文
推荐电磁兼容
阅读排行
网站首页  |  网站介绍  |  版权声明  |  积分规则  |  定制推广  |  服务协议  |  隐私政策  |  联系我们  |  广告服务  |  会员服务  |  排名推广  |  网站留言  |  RSS订阅  |  网站地图  |  违规举报