常见EMI抑制方式
目前对于EMI的常见抑制方式包括屏蔽法(Shielding)、扩展频谱法(Spread Spectrum)、使用滤波器(Filter)等,以及透过整合接地、佈线、搭接等层面来防治。
余晓锜表示,电磁屏蔽法大部份是用来屏蔽300MHz以上的电磁杂讯,例如法拉第盖的使用就是一例,此外,运用遮蔽复合材料也是常见的手法,例如手机就常见以真空电镀方式,在塑胶壳内部佈满一层如镍之类的屏蔽材质,藉此隔绝电磁波发散。
扩展频谱法则是用来将时钟(Clock)的信号展频,使其峰值(Peak)信号波形振幅减低来降低信号的峰值位准,目前有些BIOS已提供内建的扩频功能,可让使用者自行设定。余晓锜指出,使用扩频法需要在信号失真度和EMI减弱程度之间取得平衡,一般是取1%~1.5%,若超过3%通常就会让信号过于失真而不可行。
此外,滤波器或滤波回路的使用因为成本低廉且SMD(表面黏着)制程的加工需求,所以最为一般设计工程师採用。余晓锜指出,滤波器的使用机会和模式根据不同防治需求来决定,例如大电流的Bead可用在电源电路的路径(Power Trace)上;一般的Bead可用来抑制某特定频率的杂讯信号;CMF则用来抑制USB、1394、LVDS等差模线路的杂讯幅射问题。
不过余晓锜强调,对于EMI的抑制有诸多解决方式,必须因时因地制宜选择,只要有效就是好的防制方法,并没有哪一种特定方式特别胜出。
高速数位电路及类比-数位混合电路EMI防治法
由于运算速度的提升和高速传输介面的应用,目前数位电路已走向高速化。在高速数位电路中,只要阻抗匹配接近理想的阻值(以铜线被覆于FR4材质而言约50欧姆),让所有信号线都成为传输线(Transmission Line)的理想状态下,理论上应该不会产生EMI问题,但是余晓锜表示,目前实际上的佈线设计还无法达到上述要求,所以只好将高速信号线尽量走在内层,其相邻的上层用地(铺铜)来覆盖以达到遮蔽隔离(Shielding)电磁幅射的效果,亦或在信号线上适当的距离加上对地的滤波电容(DeCap bypass to Ground)来降低EMI。
另外,针对日渐普遍的类比及数位信号混合电路EMI防治,余晓锜也提出以下几个可遵循的设计原则:
1. 类比与数位信号须分区布线。
2. 所有类比信号要在类比区内布线(包含地,电源及信号线)。
3. 所有数位信号要在数位区内布线(包含地,电源及信号线)。
4. 严禁类比或数位信号直接跨区布线。
5. AD IC晶片下方严禁布线。
了解各国法规及标准以通过测试
除了各种抑制技巧外,量测也是EMI防治过程中重要的一环。余晓锜对此表示,EMI量测绝大部份是使用频谱分析仪(Spectrum Analyzer)及接收器(Receiver),而EMS因是产品耐受性测试,所以必须在符合国际法规的环境下执行测试,目前坊间有许多实验室均可执行EMS标准测试。
要通过测试,首先必须了解各国对于EMC的法规及相关标准要求。余晓锜指出,目前全球较重要的EMC标准包括:台湾BSMI(CNS13438)、中国大陆CCC(GB4943)、日本VCCI、韩国MIC、美国FCC(Part 15)、欧盟CE(EN55022)、纽澳C-Tick(ANS3548)等等,EMS的要求标准则主要有韩国MIC(引用EN55024)和欧盟CE(EN55024)。
目前各国所引用的EMC和EMS测试项目则分别如下表一、二:
表一:各国EMC测试项目一览(余晓锜提供)
表二:各国EMS测试项目一览(余晓锜提供)
以最低成本符合国际规范将成最大挑战
虽然以一般消费性电子资通讯产品而言,并没有特定类型产品的EMI会特别严重,不过以学理及经验来看,余晓锜指出交流供电产品的EMI问题会比直流供电产品严重,处理上也较为复杂;此外,多层板产品的EMI问题也会比层数少的产品较容易处理。
不过,对于台湾电子厂商面临的最大EMC问题,余晓锜认为不在于技术而在于成本。因为在激烈的市场竞争下,产品成本是各家厂商最优先考量的重点,往往牺牲了技术上应有的设计考量来迁就成本要求,例如原本以四层板设计可获致最佳EMI抑制效果,就可能因成本考量而改用防治效果较差的两层板。
余晓锜表示,一般EMC防治成本约佔产品总体材料成本的15%~10%,而这中间的空间就需要看设计者的经验来决定费用降低的幅度,所以如何在最低成本的艰困条件下,完成符合国际EMC规范的产品,将是未来台湾电子厂商的研发或EMC工程师所面临的最大挑战与课题。