2.1.3 传输线的长线处理方法
当传输线的长度不符合式(2)时则称为长线,长线不能用集中参数网络来替代,而要用传输线理论来分析,考虑到阻抗匹配问题,即传输线两端的负载阻抗和源阻抗都应该和传输线特性阻抗Z0相等,否则会产生反射。
当图1中的传输线不符合式(2)时,他是一个长线系统。设ZS为源阻抗,Z0为传输线特性阻抗,ZL为负载阻抗,当信号从信号源出发通过传输线到达负载阻抗ZL时,如果ZL=Z0则没有反射,信号能量全部被ZL吸收,这是匹配状态,ZL上的电压就是信号的入射电压U0。如果ZL≠Z0,即负载端不匹配,则入射能量不能被负载全部吸收,有一部分就被反射回去,有反射电压存在。
同样,在源端如果ZS=Z0则是匹配状态,如果不相等则也存在反射。当源端和负载端都不匹配时信号将在源端和负载端来回反复反射,反射波和原信号叠加,如果传输线传输的是脉冲数字信号则多重反射将使脉冲边沿产生台阶、上冲和下冲等问题。当出现多重反射时负载端会出现与振铃现象相似的波形,影响系统抗扰性能。
根据式(2)可以计算对应于不同脉冲上升时间的最小的长线长度,传输线超过最小长线长度时就要考虑阻抗匹配的问题。具体应用时可以在源端和负载端加入RCL网络来匹配传输线的阻抗。
2.1.4 共模骚扰和差模骚扰
骚扰信号在导线上传输时有2种方式:共模方式和差模方式。共模噪声变成差模噪声后才能对设备产生干扰,因为有用信号都是差模形式的。这种转换是由电路中传输线对参考端的阻抗是否平衡来决定的。
图2是一个信号传输系统的阻抗特性图,图中的4个电阻分别表示传输线在2个设备中的对地阻抗。2个设备相距较远其地线与机壳连入大地,如果2个设备的接地点之间存在噪声信号,则由其产生的噪声电流会沿着2条传输线流动,假如设备中传输线对地的阻抗不相等的话,2条传输线中的噪声电流也不相等,这时共模噪声就变成差模噪声干扰有用信号。
在计算机串行总线中,RS232使用非平衡方式,只有十几米的传输距离。而RS422采用平衡传输方式,则达到了上千米的传输距离。在设计远距离传输系统时应该仔细考虑信号线之间的阻抗平衡问题。
2.1.5 共阻抗耦合
当设备或元器件共用信号线或电源线时,他们之间就会通过公共阻抗产生相互干扰,如共用电源则称共电源阻抗干扰,共用地线称共地线阻抗干扰。
图3中,电路1和电路2分别与电源各自形成一个电流回路,其中一个电路电流的增加必将使另一个电路的电流减少。电流的不断变化,就会产生变化无常的电场和磁场,引起电磁噪声,并通过电源线、地线形成复杂的交叉干扰。
在高频数字系统中,当电路1工作时,会在回路公共阻抗上产生高频数字噪声,该噪声在电路2的回路中使地线“飘动”。不稳定的地线将严重降低运算放大器、模/数转换器等电路的性能。削弱电源系统共阻抗耦合的措施主要有以下2个:
(1)降低接入阻抗
电源线的布线要根据电流的大小,尽量加大导线的宽度,使电源线、地线的走向与信号传输方向一致,减少存在噪声的单元和其他单元之间公共电源阻抗,有助于增强抗噪声的能力。电路板要按功能分区,各分区电路地线相互并联,一点接地。当电路板上有多个电路单元时,应使各单元有独立的地线回路,各单元集中一点与公共地相连。这样各自产生的噪声电流不会流入其他单元,避免相互串扰。
(2)使用去耦电容
嵌入式系统印制板上一般都有多个集成电路,其中某些高速大功率器件,地线上会出现很大的噪声电压。抑制噪声的方法是在各集成器件的电源线和地线间接入去耦电容,以缩短开关电流的流通途径,降低电阻压降。