苏州莱瑞测信息科技有限公司

开关电源EMI等效分析详解

   2017-12-25 电源联盟15041

二、开关电源的传导EMI 等效电路

1. 反激式开关电源的传导EMI 等效电路

(1)电路原理图

电路原理图

(2)两种工作模式

在半个电网周期内,输入整流桥有两种大的工作模式,即:整流桥工作模式Ⅰ和整流桥不工作模式Ⅱ。

整流桥工作模式Ⅰ和整流桥不工作模式Ⅱ

(3)工作模式Ⅰ的EMI 等效电路推导

3-A、工作模式Ⅰ的等效电路(正负半周工作一样)

工作模式Ⅰ的等效电路

在工作模式Ⅰ的情况下,两种工作工作模式在正负半周都会出现,此时整流桥是导通工作的。

3-A-1:工作模式Ⅰ在有LISN 时的等效电路

工作模式Ⅰ在有LISN 时的等效电路

3-A-2:工作模式Ⅰ在有LISN 时的等效受控源电路

工作模式Ⅰ在有LISN 时的等效受控源电路

开关变换器的时变因素与非线性因素主要是由开关元件导致的。为了使变换器的等效电路成为线性电路,开关元件平均模型法采取了对开关元件直接进行分析的方法。

首先对开关元件的电压或电流变量在一个开关周期内求平均,并用以该平均变量为参数的受控源代替开关元件,得到等效的平均参数电路。平均参数等效电路消除了变量波形中因开关动作引起的脉动,即消除了时变因素,但仍然是一个非线性电路。这样的电路由于同时包含了直流分量与交流分量的作用,称为大信号等效电路。

其次,若使大信号等效电路中的各平均变量均等于其对应的直流分量,同时考虑到直流电路中稳态时电感相当于短路、电容相当于开路,可以得到变换器的直流等效电路,直流等效电路为线性电路;若使大信号等效电路中的各平均变量分解为相应的直流分量与交流小信号分量之和,即分离扰动,并忽略小信号分量的乘积项(即二阶微小量)使其线性化,再剔除各变量中的直流量,可以得到变换器的小信号等效电路,小信号等效电路也为线性电路。可见,开关元件平均模型法的指导思想仍然是求平均、分离扰动和线性化。

上图中开关管Q 等效为受控电压源,整流二极管D 等效为受控电流源。有源开关Q 时而接通是输入电压Vg,时而短路,用状态变量输入电压的平均值表征有源开关元件Q 的端电压是合理的,因此用一个电压控制的受控电压源来代替有源开关管Q;无源开关D 时而接通副边电感电流,时而开路,由于电感电流是一个状态变量,用电感电流的平均值表征无源开关元件D 的平均电流也是合理的,因此用一个电流控制的受控电流源代替无源开关元件D。

3-A-3:工作模式Ⅰ在有LISN 时的等效受控源平均电路(直流等效)
工作模式Ⅰ在有LISN 时的等效受控源平均电路

上图直流等效电路图中,电感L1 和L2 等效为短路,电容等效为开路。

3-A-4:工作模式Ⅰ在有LISN 时的等效受控源平均电路(交流等效)
工作模式Ⅰ在有LISN 时的等效受控源平均电路

在交流等效中,输出负载、电感等效开路,电容、供电电源等效短路。从图中可以看到,开关管 Q的交流分量Vds(ac)(t)和二极管 D 的交流分量Id(ac)(t)可以进行傅里叶变换,分解成不同频率成分的正弦波,频率不一样,阻抗也随着变换,再利用叠加原理将不同频率成分形成的频谱幅度进行相加。

3-B-1:工作模式Ⅰ在原边MOSFET 交流电压分量单独作用下的EMI 等效电路

工作模式Ⅰ在原边MOSFET 交流电压分量单独作用下的EMI 等效电路

在MOSFET 交流电压分量单独作用下,副边电流源开路,由于副边流过电流为零,所以原边电流也为零,在此变压器就不起作用了,只有励磁电感Lm,将上述电路图简化其等效电路图为:

电路图简化其等效电路图

在MOSFET 单独作用下,其差模成分路径为:

在MOSFET 单独作用下,其差模成分路径为

其中,差模成分分两条支路,一条如红色所示,另一条如蓝色所示。在此等效电路中,滤波电容CB 一条支路给差模成分提供了路径,可以知道如果减小滤波电容CB 的阻抗,则对差模成分分流更多,在电阻R1 和R2 形成的电压会更小,仪器检测幅值更低,一般我们都选取等效串联阻抗较小的滤波电容。另一条支路中有激磁电感Lm,单从差模成分的抑制方面考虑,增加激磁电感Lm 的值可以增加阻抗,对差模成分也有良好的抑制作用。

在MOSFET 单独作用下,其共模成分路径为:

共模成分路径

 

可知,要想有效减小共模成分,则必须要减小寄生电容Cpq 的容值,增加共模流经路径的有效阻抗。

工作模式Ⅰ在原边MOSFET 交流电压分量单独作用下的EMI 最终等效电路为:

EMI 最终等效电路

在差模EMI 等效电路中,电阻R1 和电阻R2 处于串联流经差模电流,在电阻R1 和电阻R2 两端分别产生电压为Vdm(t),故在电阻R1 和电阻R2 串联等效电阻100Ω上产生2Vdm(t)。激磁电感Lm 感抗越大对差模抑制越好,对差模分量来说,CCM 模式比DCM 差模要好。

差模EMI等效电路

工作模式Ⅰ在原边MOSFET 交流电压分量单独作用下的EMI 最终等效电路

在原边MOSFET 交流电压分量单独作用下的EMI 最终等效电路

3-B-2:工作模式Ⅰ在副边二极管交流电流分量单独作用下的EMI 等效电路。

3-B-2:工作模式Ⅰ在副边二极管交流电流分量单独作用下的EMI 等效电路

在低频(150KHz)情况下,忽略变压器寄生电容(在高频情况下变压器层间电容、原副边电容不能忽视)。由于整流二极管对地电容无法形成共模回路,故在LISN 负载上无共模噪声。

工作模式Ⅰ在副边二极管交流电流分量单独作用下的EMI 最终等效电路

工作模式Ⅰ在副边二极管交流电流分量单独作用下的EMI 最终等效电路

由于在低频情况下,副边二极管对地寄生电容无法形成共模回路,故没有共模EMI 等效电路。

 
免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
 
更多>相关阅读
推荐图文
推荐电磁兼容
阅读排行
点赞排行
网站首页
网站介绍
版权声明
积分规则
服务协议
隐私政策
网站服务
广告服务
会员服务
排名推广
定制推广
积分换礼

RSS订阅
网站留言
网站地图
违规举报

微信公众号

联系我们
苏州市姑苏区三香路979号中翔经贸大楼7楼
服务电话:0512-68157565
客服热线:17314226061
电子邮件:service@lairuice.com