结论
移除线缆可以明显观察到DUT辐射噪声的降低。尽管如此,即使我们移除两个雷达线缆,测量结果仍然显示未通过。事实上,在去掉雷达模块的情况下,控制器也会不断尝试通过串行线缆进行通信----并且不会超时。因此,我们推测,连接雷达模块和控制器之间的串行通信接口很有可能是导致该辐射噪声超标的罪魁祸首。为了验证我们的猜想,我们需要对通信接口做一些过滤。
由于镍锌铁氧体磁导率比较低,在低频段的使用性能不高,因此我们决定在线缆中串联电阻。这算是一种非常实用的办法,因为PCB上已经安装了0欧姆的串联电阻。通过用1K欧姆的电阻替换0欧姆的电阻可以使辐射噪声降低到12dBμV左右。但是,导致的结果却是串行接口没法可靠地工作在指定的电压范围内。所以,我们还需要调整晶体管串行电路中的一些其他电阻,以解决辐射噪声超标问题,同时也能保证串行接口的性能。进行了一些修改并重新测量之后,结果显示如下:

图9 修改后的测试结果
为了更清楚地展示这个变化,我们重新设置了频谱仪的SPAN,使得其刚好在两个相邻的广播频道之间,意味着测量的频谱结果几乎没有AM广播信号的干扰。
如下是在修改之前的屏幕截图:

图10 修改前截图
如下是修改之后屏幕截图:

图11 修改之后的截图
通过截图可知,修改后的辐射噪声水平下降了12dBμV。
经过修改后,我们重新在暗室进行了测量,以下是最终测量结果的截图:

图12 最终在暗室进行的测试结果截图
如图所示,测试设备最终通过了500KHz到2MHz频段的辐射噪声测试。
总结
利用频谱仪和TEM小室来做辐射噪声测试是一种非常经济实用的方法。要知道,专门用于EMC一致性测试的吸波暗室造价成本高达几百万,即使是送到专门的机构测试, 也需要多次整改和测试,费用也不菲。
辐射噪声一般具有相对较宽的频谱范围,没有尖锐的波峰。尽管有一些广播电台的频谱干扰,频谱仪和TEM小室也能很好地对设备的辐射噪声进行测试和观察。
利用EMC近场探头可以定位和识别PCB上的辐射泄露源,频谱仪结合TEM小室可以对整改后的设备进行多次测试, 以判断其是否符合EMC规范的标准。在对多个独立单元以及线缆互联的设备进行测试时也是非常实用的。
改进倒车雷达这个案例需要进行多次反复整改才能找到既满足EMC合规性标准,又能符合产品实际功能要求的理想解决方案。如果我们在每次整改之后,都要送到专用的暗室进行测量的话,成本是非常高昂的,远远超过我们购买频谱仪和TEM小室的预算。