苏州莱瑞测信息科技有限公司

开关电源EMI滤波器设计

   2010-08-25 4020
本文导读:     摘要:分析了一种典型的开关电源电路,利用Pspice软件对其传导电磁干扰进行仿真研究,以TDK公司提供的元器件模型,提出了一种二阶无源EMI滤波器,完全消除了电路输出信号中的尖峰干扰,抑

     摘要:分析了一种典型的开关电源电路,利用Pspice软件对其传导电磁干扰进行仿真研究,以TDK公司提供的元器件模型,提出了一种二阶无源EMI滤波器,完全消除了电路输出信号中的尖峰干扰,抑制了开关电源电路中的共模、差模噪声。同时,研究源和负载理想、非理想阻抗特性对滤波器插入损耗的影响,具有一定的意义。

  开关电源以其体积小、重量轻、效率高、性能稳定等方面的优点,广泛应用于工业、国防、家用电器等各个领域。然而,开关电源*率半导体器件的高速通断及整流二极管反向恢复电流产生了较高的du/dt和di/dt,它们产生的尖峰电压和浪涌电流成为开关电源的主要干扰源。文中给出的电源滤波器元件主要基于TDK公司提供的模型,该模型考虑了元件的高频寄生参数,更符合工程应用。

  1 开关电源EMI产生机理

  1.1 开关电源的电磁干扰源

  (1)开关管产生干扰。开关管导通时由于开通时间很短及回路中存在引线电感,将产生较大的du/dt和较高的尖峰电压。开关管关断时间很短,也将产生较大的di/dt和较高的尖峰电流,其频带较宽而且谐波丰富,通过开关管的输入输出线传播出去形成传导干扰;

  (2)整流二极管反向恢复电流引起的噪声干扰。由于整流二极管的非线性和滤波电容的储能作用,二极管导通角变小,输入电流成为一个时间很短,而峰值很高的尖峰电流,含有丰富的谐波分量,对其他器件产生干扰。二级滤波二极管由导通到关断时存在一个反向恢复时间。因而,在反向恢复过程中由于二极管封装电感及引线电感的存在,将产生一个反向电压尖峰,同时产生反向恢复尖峰电流,形成干扰源;

  (3)高频变压器引起EMI问题。隔离变压器初、次级之间存在寄生电容,这样高频干扰信号很容易通过寄生电容耦合到次级电路,同时由于绕制工艺问题在初、次级出现漏感将产生电磁辐射干扰。另外,功率变压器电感线圈中流过脉冲电流而产生电磁辐射,而且在负载切换时会形成电压尖峰;

  (4)二次整流回路干扰。开关电源工作时二次整流二极管、变压器次级线圈和滤波电容形成高频回路,向空间辐射噪声;

  (5)元器件寄生参数引起的噪声。主要是开关管与散热片、变压器初、次级的分布电容及其漏感形成的干扰。

  1.2 共模、差模传导干扰路径

  共模干扰主要为相、中线干扰电流通过M1漏极与散热片之间的耦合电容通过接地线形成回路,差模干扰则在相线与中线间形成回路,干扰路径如图1所示。


 

  参阅资料对比发现,如果将设计的EMI滤波器置于电网电源与Lisn之间,可以滤除来自交流电网的传导性性电磁干扰,但是并没有考虑开关电源电路中的传导性共、差模电磁干扰和输出信号中的强尖峰干扰。因此,有必要在开关电源输出端添加EMI滤波器用来进行干扰抑制,如图2即文中提出的开关电源相对应的二阶无源EMI滤波器结构。其中,开关电源输出为DC 30 V±1%。


  2 应用PSPlCE软件仿真

  2.1 滤波器输入输出结果比较

  如图2所示开关电源输出端接二阶无源EMI滤波器,利用电压探头可以测量滤波器输入、输出信号,仿真结果如图3所示。


 

  如图3所示,开关电源输出电压信号经过EMI滤波器后几乎没有衰减,对图3局部放大如图4所示。输出信号尖峰干扰完全滤除,同时由于该滤波器元器件采用TDK模型,均考虑了元件高频寄生参数的影响,因而更贴近实际的工程应用。一般开关电源设计中在变压器次级都有尖峰抑制器,但输出纹波电压稍大,若去除尖峰抑制器直接使用该滤波器后纹波电压减小约80%。


 

  2.2 传导共模、差模干扰信号分析

  如图5所示为典型的Lisn电路图,对于工频(50 Hz或60 Hz),电感感抗很小,电容容抗很大,因而交流信号可几乎无衰减的通过Lisn,而高频信号可很好的被阻隔。这里利用Pspice电压探头通过Lisn可以很容易的分离共模、差模信号。


 

  探头探测到的电压由相线或中线电流流过50 Ω电阻形成的,具体表达式为


 

  在Pspice中利用算法可以分离出共模与差模噪声,如图6所示。共模噪声低于30 dBμV,差模噪声低于50 dBμV。


 

  为了验证滤波器对CM、DM噪声的抑制作用,可以在滤波器输出端添加图5所示Lisn,分离出共模、差模噪声,如图7所示。


 

  如图7所示,共模噪声最大值为32 dBμV(1 ms),在时域分析7 ms后出现负值。差模噪声电平最大值为3.94 dBμV(1 ms),时域分析3 ms后出现负值,说明在滤波器输出端共模、差模噪声得到了较好的衰减。

 
反对 0举报收藏 0打赏 0评论 0
免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
 
更多>相关阅读
推荐图文
推荐电磁兼容
阅读排行
网站首页  |  网站介绍  |  版权声明  |  积分规则  |  定制推广  |  服务协议  |  隐私政策  |  联系我们  |  广告服务  |  会员服务  |  排名推广  |  网站留言  |  RSS订阅  |  网站地图  |  违规举报